Pages

Banner 468 x 60px

 

Senin, Januari 07, 2019

Relasi dan fungsi

0 komentar

BAB III

RELASI DAN FUNGSI

1. Pengertian Relasi
Antara elemen-elemen dari dua buah himpunan seringkali terdapat suatu relasi atau hubungan tertentu.
Misalnya :
         A = { 2, 3, 5 }                           
         B = { 1, 4, 7, 10, 14 }
Akan kita tinjau relasi “ adalah faktor dari “ antara elemen-elemen himpunan A dengan elemen-elemen himpunan B. Tampaklah bahwa :
         2 adalah faktor dari 4
         2 adalah faktor dari 10
         2 adalah faktor dari 14
         5 adalah faktor dari 10
Sedangkan 3ΠA tidak berrelasi dengan suatu elemenpun dari himpunan B.
Relasi tersebut dapat digambarkan dengan diagram panah. Gambarlah Diagram Panah tersebut! Relasi itu dikatakan sebagai suatu relasi dari himpunan A ke himpunan B. Perhatikan bahwa suatu relasi mempunyai arah tertentu. Dalam diagram diatas arah itu dinyatakan dengan anak panah. Relasi tersebut juga dapat dinyatakan sebagai himpunan pasangan terurut. Elemen dari himpunan A yang berrelasi dengan elemen dari himpunan B di susun menjadi suatu pasangan terurut, diman elemen dari A pada urutan pertama dan elemen dari B pada urutan yang kedua. Jadi kalau relasi “ adalah faktor dari “ tersebut diberi nama R, maka :
R = { (2, 4), (2, 10), (2, 14), (5, 10) }
Jelaslah bahwa R  A x B
Secara umum dapat dikatakan bahwa suatu relasi dari himpunan A ke himpunan B merupakan himpunan bagian dari  AXB (produk Cartesius A dan B). sehingga dapat didefinisikan:
         R adalah suatu relasi dari himpunan A ke himpunan B bhb. R  A x B
A disebut daerah asal (domain) dan B disebut daerah kawan (kodomain) dari relasi R tersebut.
Jika (x,y) Î R, maka dikatakan bahwa ”x berelasi dengan y” (ditulis ”xRy”). Jika R adalah suatu relasi dari B ke A dengan R = {(y, x) (x,y) Î R}, maka jelaslah bahwa R  B x A

Contoh :
         A = { -3, 3, 4, 7, 10 }                            
         B = { 2, 3, 4, 5, 6, 7, 8 }
Relasi “berselisih 2 dengan” antara elemen-elemen himpunan A dengan elemen-elemen himpunan B dapat disajikan sebagai himpunan bagian dari A x B, yaitu :
R = { ( x,y ) xΠA, yΠB,  = 2 }
    = { (3,5), (4,2), (4,6),(7,5),(10,8) }  A X B
         ( 4,6 ) Î R, maka dikatakan bahwa “ 4 berelasi dengan 6 “ ( 4 berselisih 2 dengan 6 )   atau 4R6.
R = { (5,3),(2,4),(6,4),(5,7),(8,10)}

2. Relasi-relasi Khusus

Jika  A = B maka relasinya disebut sebagai relasi pada himpunan A.
a)   Suatu relasi R pada himpunan A disebut  relasi refleksif bhb setiap elemen   dari A berrelasi R dengan dirinya sendiri.
     
            R refleksif pada A bhb. ( xÎA). (x,x) Î R
                                                xÎA).   x R x
    
      Contoh :
     A adalah suatu keluarga himpunan. R adalah relasi ”himpunan bagian”  yaitu:        R ={ (x,y)  xÎA, yÎA, x y }

     R adalah  relasi  refleksif  pada A  karena  untuk  setiap  xÎA berlakulah bahwa      x, yaitu (xÎA). (x,x) ÎR
     
      Suatu relasi R pada himpunan  A disebut relasi non- refleksif bhb. ada elemen dari A yang tidak berrelasi R dengan dirinya sendiri.
      R non-refleksif pada A bhb. (xA).( x,x) Ï R
                                                    (xÎA). x R x
      Suatu relasi R pada himpunan  A disebut relasi irrefleksif bhb. setiap elemen dari A tidak berelasi R dengan dirinya sendiri.
      R irrefleksif pada A bhb.  (xÎA).( x,x) Ï R
                                                (xÎA). x  x
      Perhatikan  bahwa  suatu  relasi  yang  irrefleksif  dengan  sendirinya   adalah non-refleksif, tetapi sebaliknya belum tentu.
      Contoh :
               A = himpunan semua bilangan nyata.
         Relasi “ > “ adalah suatu relasi yang irrefleksif (jadi juga non- refleksif ) pada A karena  setiap bilangan nyata tidak lebih besar  dari pada dirinya sendiri.
               A = himpunan semua manusia
      Relasi “ dapat menguasai” adalah relasi yang non – refleksif  pada A ( karena ada orang yang tidak dapat menguasai dirinya sendiri), tetapi bukan relasi yang irrefleksif ( karena tidak semua orang tidak dapat menguasai dirinya sendiri)

b) Suatu relasi R pada himpunan A disebut relasi simetris bhb. Untuk setiap dua elemen x dan y dalam A, jika x berrelasi R dengan y, maka y berrelasi R dengan x.
     R simetris pada A bhb. (x,yÎA) (x,y) Î R  (y,x)  Î R
                                           (x,yÎA) (x,y) Î R  (x,y)  Î R
                                        (x,yÎA) xRy          yRx
Contoh :
A = himpunan semua garis lurus pada bidang datar.
Relasi “ sejajar” adalah relasi yang simetris pada A, karena untuk setiap dua garis lurus x dan y, di mana  x//y, maka pastilah y//x
   Suatu relasi R pada himpunan A disebut relasi non – simetris bhb. Ada  sepasang elemen x dan yA  dimana x berrelasi R dengan y tetapi y  tidak berrelasi R dengan  x.
  
     R non- simetris pada A bhb.   (x,yÎA). (x,y) ÎR       ( y,x ) ÏR
                                                     (x,yÎA). (x,y) ÎR  ( y,x ) ÏR
                                                     (x,yÎA). xRy      y x
   Suatu relasi R pada himpunan  A disebut relasi asimetris bhb. Untuk setiap pasangan elemen x dan yÎA di mana x berrelasi R dengan y, maka y tidak berrelasi R dengan x.
     R asimetris pada A bhb.  (x,yÎA). (x,y) ÎR   ( y,x ) ÏR
                                        (x,yÎA). (x,y) Î        ( y,x ) ÏR
                                         (x,yÎA). xRy                yx
Jelas bahwa suatu relasi yang asimetris pada himpunan A pasti juga non-simetris pada A, tetapi sebaliknya belum tentu.
Contoh:
A = Keluarga himpunan.
Relasi “ himpunan bagian sejati” adalah suatu relasi yang asimetris pada A (jadi juga non-simetris ) karena untuk setiap dua himpunan x dan yÎA dimana xy, maka pastilah bahwa yx
A = himpunan semua manusia.
Relasi “mencintai” adalah relasi yang non simetris pada A, tetapi bukan relasi yang asimetris pada A.
Suatu relasi R pada himpunan A disebut relasi anti-simetris bhb. Untuk setiap pasang elemen x dan yA, jika x berrelasi R dengan y dan y berrelasi R dengan x, maka x = y.
R antisimetris pada A bhb.
      (x,yÎA). (x,y) Î R    ( y,x ) ÏR   x = y
     (x,yÎA). (x,y) Î   ( y,x ) ÏR x = y
      (x,yÎA). xRy      y x    x = y
Contoh:
A = keluarga himpunan.
Relasi “ himpunan bagian” adalah relasi yang antisimetris pada A, karena untuk setiap dua himpunan x dan y, jika x  y dan y  x, maka x = y.
c). Suatu relasi R pada himpunan A disebut transitif bhb. Untuk setiap tiga elemen x,y dan zA, jika x berrelasi R dengan y dan y berrelasi R dengan z , maka x berrelasi R dengan z. R transitif  pada A bhb.
         (x,yzÎA). (x,y) ÎR  ( y,z ) ÎR   (x,z) ÎR
         (x,yzÎA). xRy      yR z  x Rz
Contoh:
A = himpunan semua bilangan nyata.
Relasi “adalah faktor dari” adalah relasi yang transitif  pada A.
Suatu relasi R pada himpunan A disebut relasi non-transitif bhb. Ada tiga elemen x,y dan z ÎA dimana x berrelasi R dengan y dan y berrelasi z, tetapi x tidak berrelasi R dengan z.
R non-trasitif pada A bhb :
         (x,yzÎA). (x,y) ÎR  ( y,z ) ÎR   (x,z) ÏR
         (x,yzÎA). xRy      yR z  z
Jelaslah bahwa relasi yang intransitif pada himpunan A pasti juga non-transitif  pada A.
Contoh:
A = himpunan semua garis lurus pada bidang datar.
Relasi “ tegaklurus” adalah relasi yang  intransitif pada A (jadi juga non-transitif) karena untuk setiajp tiga garis x,y dan z, jika x tegak lurus y  dan y tegaklurus z maka pastilah bahwa x tidak tegak lurus z.
A = himpunan semua manusia.
Relasi “ mengenal” adalah relasi yang non – transitif tetapi bukan relasi yang intransitif pada himpunan A tersebut.

d) Suatu relasi R pada himpunan A yang sekaligus bersifat refleksif,simetris dan transitif     disebut relasi ekuivalensi pada A.

     Contoh:
     A = himpunan semua segitiga.
     Relasi “sebangun” adalah  relasi ekuvalensi pada A sebab relasi tersebut sekaligus bersifat refleksif, simetris dan transitif pada A
     A = himpunan semua bilangan bulat
     Relasi “kongruen” (lambangnya “”) dalam suatu modulo m (m = bilangan asli ) yang didefinisikan sbb :
                y ( mod.m ) bhb. x – y = k. m, dimana k adalah suatu bilangan bulat, adalah suatu relasi ekuivalensi pada A, karena:
      (1) Untuk setiap bilangan bulat x :
            x – x  = 0.m, sehingga x  x ( mod.m )
           Jadi relasi kongruensi bersifat refleksif.
      (2) Untuk setiap pasang bilangan bulat x dan y dimana
            y ( mod.m ), maka :
           x – y = k.m(k = bilangan bulat)
           Sehingga y – x = - (k.m) = (-k).m
           Dimana –k adalah bilangan bulat sebab k adalah bilangan bulat.
           Jadi : x  x ( mod.m ).
           Maka : (x,yÎA). x  y    x
           Jadi relasi kongruensi bersifat simetris.
      (3) Untuk setiap tiga bilangan bulat x,y dan z diman x  y  ( mod.m ) dan       z  ( mod.m ) maka : x – y = k.m (k= bilangan bulat).
                                y – z= k.m (k= bilangan bulat). 
          ( x – y ) + ( y – z ) = k.m + k.m
                              x– z  = (k + k).m
                               x– z = k.m
            dimana k= k + k = bilangan bulat sebab k dan k masing-masing adalah bilangan bulat. Jadi x  z ( mod.m ).
            Maka (x,yzA). x  y      z
            Jadi relasi kongruensi bersifat transitif.
      Karena relasi kongruensi sekaligus bersifat refleksif, simetris dan transitif, maka relasi tersebut adalah relasi ekuivalensi.



B. Fungsi
1. Pengertian Fungsi
Antara anggota-anggota dari suatu himpunan dapat terjadi suatu relasi dengan anggota-anggota dari himpunan yang lain. Misalnya antara anggota-anggota himpunan semua pria dengan anggota-anggota semua wanita dapat diadakan relasi “ suami “.
Secara matematis suatu relasi R antara anggota-anggota himpunan A dengan anggota-anggota himpunan B dapat dipandang sebagai himpunan bagian dari produk Cartesius kedua himpunan itu.
 A x B.

Misalnya : A = { 1, 3, 5 } dan B = { 2, 0, 4 }, maka relasi ”lebih kecil” antara anggota-anggota himpunan A dengan anggota-anggota himpunan B dapat disajikan dengan: R = { (1, 2), (1, 4), (3, 4) } A x B.
Fungsi atau pemetaan adalah suatu relasi khusus antara anggota-anggota dua buah himpunan. Sehingga fungsi dapat didefinisikan sebagai berikut.
Suatu relasi antara anggota-anggota himpunan A dengan anggota-anggota himpunan B disebut Fungsi (pemetaan) bhb relasi itu mengkaitkan setiap anggota A dengan tepat satu anggota B.

Suatu fungsi biasanya disajikan dengan lambang f. Jika fungsi f mengkaitkan anggota-anggota himpunan A, maka dikatakan bahwa f adalah fungsi dari A ke B dan disajikan dengan lambang:
 f : A  B

A disebut daerah asal (daerah sumber, domain ) dari fungsi f, sedangkan B disebut daerah kawan. (daerah jajahan , kodomain) dari fungsi f. Jika xÎA oleh fungsi f dikaitkan (dikawankan) dengan suatu anggota dari B, maka anggota dari B itu disebut ”bayangan dari x” dan disajikan dengan lambang ”f(x)”. f(x) seringkali juga disebut ”nilai fungsi” untuk x.
Secara simbolis matematis, definisi fungsi f dapat disajikan sbb.
f : A  bhb. (xÎA).(! yÎB) . y = f (x)

Perhatikan bahwa suatu fungsi f dari A ke B adalah suatu relasi yang mempunyai dua sifat khusus, yaitu:
  1. Setiap anggota himpunan A (daerah asal) dikawankan dengan anggota himpunan B (Seringkali dikatakan bahwa  ”daerah asal dihabiskan”
  2. Kawan dari anggota-anggota himpunan A (daerah asal) adalah tunggal. Sifat ini dapat dinyatakan secara simbolis:
(x, xÎA). x = x  f (x) = f (x)
Pada umumnya, untuk suatu fungsi f : A  B, anggota-anggota dari himpunan B (daerah kawan ) tidak perlu mempunyai kawan anggota himpunan A (daerah kawan tidak perlu di habiska), dan jika anggota himpunan B mempunyai kawan anggota himpunan A, kawannya diA itu tidak harus tunggal.
Suatu fungsi f dari A ke B dapat diilustrasikan dengan diagram panah sebagai berikut.



Himpunan semua anggota himpunan B yang merupakan bayangan dari suatu anggota himpunan A disebut daerah hasil (range) dari fungsi f dan disajikan dengan RJadi:
 R= { yÎ( xÎA). y = f (x) }


Misalnya untuk fungsi f : A  B yang disajikan dengan diagram panah sebagai berikut.

A
B










f (1) = f (2) = 7 ; f (3) = 9 ; F (4) = f (5) = 10
R = { 7, 9, 10 }
Seperti telah diuraikan di atas, jika suatu anggota dari daerah kawan mempunyai kawan anggota dari daerah asal, maka kawannya itu tidak harus tunggal. Himpunan semua anggota dari daerah asal yang merupakan kawan dari suatu anggota daerah kawan disebut bayangan invers dari y dan disajikan dengan lambang f(y). Jadi:
f(y) = {xÎy = f  (x) }

Pada contoh fungsi : f : A  B di atas:
f( 7 ) = { 1, 2 };
f( 9 ) ={ 3 } ;
f( 10 ) ={ 4, 5 };
f( 6 ) = f( 8 ) =  f( 11 ) =.
Jika  f : A  B adalah suatu fungsi dari A ke B, maka yang dimaksud dengan invers dari fungsi f, disajikan dengan f, adalah relasi yang mengkaitkan anggota-anggota himpunan B dengan anggota-anggota himpunan A. Jelaslah bahwa pada umumnya invers dari suatu fungsi tidak  merupakan fungsi (dari B ke A) melainkan  hanyalah merupakan suatu relasi biasa.

2. Cara menyajikan fungsi
Ada dua macam cara untuk  menyajikan suatu fungsi , yaitu :
a.       Cara aturan :  fungsi itu  disajikan  dengan cara menyatakan  aturan yang menentukan relasi antara angggota – anggota daerah asal dengan anggota – anggota daerah kawannya.
Contoh :
f: R  R dimana f (x) = x
R = himpunan semua bilangan nyata.
    b.  Cara himpunan : Seperti halnya  relasi, maka  fungsi f dari A ke B dapat dipandang     sebagai   himpunan  bagian ( khusus ) dari A x B.
         Maka fungsi  f : R     R dimana f ( x ) = x dapat juga disajikan   sebagai  suatu himpunan, yaitu himpunan bagian dari R x R :
                        f = { (x,y) xΠR, y Î R  y =  x }
         Fungsi f : A  B yang digambarkan dengan diagram panah pada contoh diatas dapat juga  disajikan sebagai :
         f = { (1,7),(2,7),(3,9),(4,10),(5,10)}
         Perhatikan bahwa dalam penyajian fungsi dengan cara himpunan, setiap   anggota dari daerah asalnya muncul tepat satu kali  sebagai komponen yang pertama dari anggota – anggota himpunan itu.

3. Kesamaan dua buah fungsi.
Dua buah fungsi f : A  B dan g : A  B dikatakan sama jika kedua fungsi itu mengkaitkan anggota-anggota dari daerah asalnya dengan anggota- anggota yang sama di daerah kawannya.
           
f = g    bhb  (xÎA).    f(x) = g (x)

Contoh :
f : R R   dengan f (x) = 2(x+1) (x-2), dan g : R R  dengan g(x) =  2 x-2x-4
Karena f (x) = 2(x+1) (x-2) = 2( x-x-2) = 2 x-2x-4 = g (x), maka f = g 


4. Fungsi – fungsi Khusus.
Beberapa fungsi khusus yang diberi sebutan karena sifat-sifat/ karakteristiknya adalah sebagai berikut.
a.   Suatu fungsi f : A  B disebut fungsi surjektif  dari A kepada (onto) B jika setiap anggota B merupakan bayangan dari suatu anggota A. Jadi pada fungsi yang surjektif, daerah hasilnya berimpit dengan daerah kawan (atau daerah kawannya dihabiskan ).
      f : A  B adalah fungsi surjektif bhb.
      (yÎB) (xÎA). y = f (x) bhb R= B    bhb   (yÎB) f   (y)  
      Contoh :
      A = {xx = bilangan bulat }
      B = {xx = bilangan cacah}
      f : A  B dimana f(x) = 
b.   Suatu fungsi  f : A  B disebut fungsi injektif  bila anggota – anggota dari B yang merupakan bayangan dari A, merupakan bayangan dari tepat satu anggota A. Dengan perkataan lain  f : A  B  adalah fungsi injektif bhb.(x, xÎA ). x  x  f(x f (x) bhb. (x , xÎA ). f(x) = f (x)    x = x
      Contoh:
      A = {x x = bilangan asli}
      B = {x x = bilangan nyata}
      Fungsi  f  ini  adalah  fungsi  yang  injektif, karena jika f (x) = f (x), maka    x1 -1 =  x-1 sehingga x = x.
      Fungsi f ini tidak surjektif karena ada anggota B yang tidak merupakan bayangan dari suatu anggota A, misalnya ½ ÎB.
c.  Suatu fungsi f : A  B yang sekaligus surjektif dan injektif disebut daerah kawannya merupakan bayangan dari tepat suatu anggota dari daerah asalnya. Dengan demikian jika f adalah fungsi bijektif maka setiap anggota dari daerah asal mempunyai satu kawan di daerah kawan dan sebaliknya setiap anggota dari daerah kawan mempunyai satu kawan di daerah asal. Karena itu fungsi bijektif seringkali disebut juga korespondensi satu-satu.

      Contoh :
      A = {x x = bilangan positif}
      B = {x x = bilangan nyata}
      f : A  B di mana f (x) = log x
      Fungsi  f  surjektif  karena  setiap  yÎB  merupakan  bayangan  suatu xÎA,  yaitu x = 10.
      Fungsi  f  ini injektif karena jika f (x) = f (x), maka log x = log x, sehingga
              10 = 10
                    x = x.
      Dengan demikian f adalah fungsi bijektif. Mudah dibuktikan bahwa f adalah fungsi bijektif  bhb. f merupakan fungsi.
      Invers dari suatu fungsi bijektif disebut fungsi invers.
      Jadi jika f : A  B adalah fungsi bijektif, maka fungsi inversnya adalah            f: B  A.
      Pada contoh diatas  fungsi  invers  dari  fungsi  bijektif f : A B di mana         f (x) = log x ialah f: B  A dimana f ( y )= 10.
d.   Suatu fungsi f : A  B disebut fungsi konstan jika bayangan semua anggota A adalah satu anggota yang sama dari B.
      f : A  B adalah fungsi konstan bhb  (!cÎB) (xÎA) . f ( x ) = c
e.   Suatu fungsi f : A  B disebut fungsi indentitas jika bayangan dari setiap anggota dari A ialah dirinya sendiri. ( Daerah asal dan saerah kawan dari suatu fungsi identits adalah himpunan yang sama ).
      f : A  A adalah fungsi indentitas bhb.(xÎA). f ( x ) = x
      Jelaslah bahwa suatu fungsi identitas adalah fungsi yang bijektif.

0 komentar:

Posting Komentar